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Abstract A mathematical model for the co-interaction of COVID-19 and dengue transmis-
sion dynamics is formulated and analyzed. The sub-models are shown to be locally asymptot-
ically stable when the respective reproduction numbers are below unity. Using available data
sets, the model is fitted to the cumulative confirmed daily COVID-19 cases and deaths for
Brazil (a country with high co-endemicity of both diseases) from February 1, 2021 to Septem-
ber 20, 2021. The fitting was done using the fmincon function in the Optimization Toolbox of
MATLAB. Parameters denoting the COVID-19 contact rate, death rate and loss of infection
acquired immunity to COVID-19 were estimated using the two data sets. The model is then
extended to include optimal control strategies. The appropriate conditions for the existence
of optimal control and the optimality system for the co-infection model are established using
the Pontryagin’s Principle. Different control strategies and their cost-effectiveness analyses
were considered and simulated for the model, which include: controls against incident dengue
and COVID-19 infections, control against co-infection with a second disease and treatment
controls for both dengue and COVID-19. Highlights of the simulation results show that: (1)
dengue prevention strategy could avert as much as 870,000 new COVID-19 infections; (2)
dengue only control strategy or COVID-19 only control strategy significantly reduces new
co-infection cases; (3) the strategy implementing control against incident dengue infection
is the most cost-effective in controlling dengue and COVID-19 co-infections.

1 Introduction

Dengue and Coronavirus disease 2019 (COVID-19) may share clinical and laboratory features
[1]. Since 2018, increase in the number of dengue cases in at risk regions to arbovirus
outbreaks such as the Reunion Island has been highlighted [1]. The 2019 Coronavirus disease
(COVID-19), now a global pandemic, is a respiratory disease caused by the severe acute
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respiratory syndrome coronavirus 2 (SARSCoV- 2 [2]. In tropical and sub-tropical areas of
the world where arboviruses (viral or bacterial infections) and COVID-19 may coexist due
to the geographical overlap of the two diseases, clinical diagnosis is difficult, and patients
should be tested for both viruses. Verduyn et al. [1] reported the first confirmed case of
co-infection of dengue fever and COVID-19 in a French overseas department located in
the Indian Ocean. A comprehensive review of the data on plausible co-infection in a single
individuals of dengue and COVID-19 has been reported [3]. Co-epidemics can create a high
burden on communities and the health system in the affected areas [4]. Although COVID-19
and dengue are caused by different viruses, the symptomatic appearance of both infections is
quite identical and may be hard to distinguish [5]. These similarity of dengue and COVID-19
symptoms could lead to misdiagnosis of one disease for the other and therefore minimizing
the extend of co-infection of the two diseases [6].

Due to clinical characteristics and underlying co-morbidities similar to COVID-19 [2,4,7],
Saddique et al. [5] reported that co-infection of COVID-19 and dengue is an emerging public
health concern in dengue endemic countries and investigated what role dengue co-infection
plays on the severity and outcome of COVID-19 patients [2]. Co-infection of COVID-19
with vector-borne disease such as malaria is a public health threat [8]. In fact, co-infection of
COVID-19 and dengue has already been reported from Asian countries and the Americas, see
[9–11] and the references therein. These studies highlight high mortality rate in dengue and
COVID-19 co-infected patients that may lead to adverse consequences [9]. Dengue viruses
circulate throughout the year in Maldives, a dengue holoendemic country [12]. Because clini-
cal and epidemiological criteria may not be sufficient to differentiate COVID-19 and dengue
infection, several co-infected patients may be misdiagnosed [13], which could potentially
lead to minimizing the extend of the co-infection. Paradoxically, there has been a decrease in
dengue cases in Guangzhou (China), mainly attributable to the impact of COVID-19 lock-
down in early 2020 [14]. However, the emergence of COVID-19 and dengue co-infection
warrants further investigations, at least at the population level to understand the potential
of COVID-19 and dengue outbreaks, which could be exacerbated during the post-monsoon
months with elevated dengue infections. Also, the dynamics and outcome of a disease may be
altered when co-infection with another disease is present [12]. However, non-severe dengue
may be more symptomatic than COVID-19 in a co-epidemic dengue endemic settings [7].

Modeling is often the timely option for informing quick decision-making, and to this
effect, mathematical modeling for public health purposes has become more refined and used
to provide framework for understanding the dynamics of infectious diseases, especially when
direct experiments are not possible [8,15–25]. More recently, Rehman et al. [26] studied a
fractional order model for COVID-19, comparing the behavior of the model using differ-
ent derivatives (Caputo, Caputo–Fabrizio and Atangana–Baleanu) and showed that Caputo
presented better results in the form of stability as compared to the other two operators. We
formulate and analyze a robust mathematical model for the co-infection of COVID-19 and
dengue transmission dynamics, with optimal control and cost-effectiveness analyses. Using
available data sets, the proposed model is fitted to the cumulative confirmed daily COVID-19
cases and deaths for Brazil (a country with high co-endemicity of both diseases), and some
important parameters are also estimated.

The organization of the rest of the paper is as follows. The proposed co-dynamic model
is formulated in Sect. 2 and theoretically analyzed in Sect. 3. By applying Pontryagin’s max-
imum principle, optimal control of the model to mitigate the spread of both diseases and
cost-effectiveness of the interventions is presented in Sect. 5. Numerical simulations per-
formed to support theoretical results and cost-effectiveness analysis are presented in Sect. 6.
The conclusion is provided in Sect. 7.

123



Eur. Phys. J. Plus        (2021) 136:1090 Page 3 of 33  1090 

2 The model

Consider a homogeneously mixed population, i.e., individuals in the population have equal
probability of contact with each other. Using a deterministic compartmental modeling
approach to describe the disease transmission dynamics, at any time t , the total popula-
tion Nh is subdivided into several epidemiological states depending on individuals health
status: susceptible humans Sh, infectious individuals with dengue Ihd, individuals who have
recovered from dengue Rhd, infectious individuals with COVID-19 Ihc, individuals who have
recovered from COVID-19 Rhd, infectious individuals with co-infected with dengue and
COVID-19 Idc.

The mosquito vector population is given by Nv comprises the susceptible vectors Sv, and
the infectious vectors with dengue Ivd. All the model parameters and their description are
provided in 1, while the flows between all the model variables (compartments) are shown in
Fig. 1.

The model has the following assumptions:

i. individuals infected with COVID-19 infection are susceptible to infection with dengue
and vice versa.

ii. co-infected infected individuals can transmit either COVID-19 or dengue but not the
mixed infections at the same time,

iii. co-infected infected individuals can recover either from COVID-19 or dengue but not
from the mixed infections at the same time,

iv. Rate of transmissibility for singly infected and co-infected individuals are assumed same.

Individuals are recruited into the population through birth or immigration at the rate �h.
Susceptible humans, Sh acquire COVID-19, following effective contacts with either singly
or co-infected individuals with COVID-19 at the rate:

λc = �hc(Ihc + Idc)

Nh

. (1)

Similarly, the population Sh is reduced due to infection with dengue at the rate:

λd = �vd Ivd
Nh

. (2)

The parameters �hc and �vd denote the effective contact rate for the acquisition of COVID-19
and dengue, respectively. The variables in the expressions are defined in Table 1.

Following from the assumptions above, the COVID-19-dengue co-infection model is given
by the following system of equations (the flow diagram of the model is presented in Fig. 1,
and related parameters of the model are given in Table 1.

From Fig. 1, we establish the following system of nonlinear ordinary differential equation
describing the dynamics of dengue and COVID-19 co-infection.

dSh

dt
= ωh −

(
�vd Ivd
Nh

+ �hc(Ihc + Idc)

Nh

)
Sh − �hSh + ηhdRhd + ηhcRhc,

dIhd
dt

= �vd Ivd
Nh

(Sh + Rhc) − (αhd + �h + ϕhd)Ihd − ϑ1

�hc(Ihc + Idc)

Nh

Ihd + αhc Idc,

dRhd

dt
= αhd Ihd − �hRhd − ηhdRhd − �hc(Ihc + Idc)

Nh

Rhd,

dIhc
dt

= �hc(Ihc + Idc)

Nh

(Sh + Rhd) − (αhc + �h + ϕhc)Ihc − ϑ2

�vd Ivd
Nh

Ihc + αhd Idc,
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Fig. 1 Compartment diagram of the human component of the model

dRhc

dt
= αhc Ihc − �hRhc − ηhcRhc − �vd Ivd

Nh

Rhc,

dIdc
dt

= ϑ1

�hc(Ihc + Idc)

Nh

Ihd + ϑ2

�vd Ivd
Nh

Ihc − (�h + ϕhd + ϕhc + αhd + αhc)Idc,

dSvd

dt
= ωd − �hd(Ihd + Idc)

Nh

Svd − �vSvd,

dIvd
dt

= �hd(Ihd + Idc)

Nh

Svd − �v Ivd, (3)

with initial conditions

Sh(0) ≥ 0, Ihd(0) ≥ 0, Rhd(0) ≥ 0, Ihc(0) ≥ 0, Rhc(0) ≥ 0, Idc(0) ≥ 0, Svd(0) ≥ 0, Ivd(0) ≥ 0.

(4)

3 Model analysis

The main focus of our study is on investigating the impact of optimal control on dengue-
COCIVD-19 co-dynamics. For this reason, the basic analysis of the dengue-only and COVID-
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19-only sub-models will focus on deriving the infection threshold parameter that governs the
stability of the model equilibria.

3.1 Invariant regions

Since the above model monitors human and mosquito populations, it is assumed that all the
state variables and parameters of the model are non-negative for all time t ≥ 0. The COVID-
19 and dengue transmission model (3) will therefore be analyzed in a feasible region �.

Lemma 3.1 Solutions of model system (3) are contained in the region � = �h × �v.

Proof Let

Nh = Sh + Ihd + Rhd + Ihc + Rhc + Idc,

and

Nv = Svd + Ivd.

Assume that (Sh(t), Ihd(t), Rhd(t), Ihc(t), Rhc(t), Idc(t)) ∈ R
6+ is a solution of the system

with non-negative initial conditions. Then, by summing all the equations of the human-only
component of the system (3) we have

Ṅh = ωh − �hNh − ϕhd Ihd − ϕhc Ihc − (ϕhc + ϕhd)Idc ≤ ωh − �hNh, ∀t ≥ 0.

Thus, on applying Birkhoff and Rota’s Theorem on differential inequality [30], as t → ∞
we obtain 0 ≤ Nh ≤ ωh

�h

. Therefore, all feasible solutions of the human-only component of

the system (3) enters the region

�h =
{
(Sh, Ihd, Rhd, Ihc, Rhc, Idc) ∈ R

6+ : N (t) � ωh

�h

}
.

Similarly, it can be shown that

�v =
{
(Svd, Ivd) ∈ R

2+ : N (t) � ωd

�v

}
.

Thus, for t ≥ 0, all possible solutions of (3) will enter the region � = �h × �v, which is
positively invariant under the flow induced by the model system (3). Also, using the theory
of permanence, it can be shown that all solutions on the boundary of � eventually enter the
interior of � [31], and the usual existence, uniqueness and continuation results hold. Hence,
the model system (3) is well-posed mathematically and epidemiologically, and it is sufficient
to consider the dynamics of the flow generated by the model (3) in �. Note that the proof of
the boundedness of solutions uses the Gronwall’s inequality, see [32]. �	
3.2 Analysis of the model without controls

Before analyzing the dynamics of the full model (3), we first analyze the two sub-models
namely: COVID-19-only and dengue-only models.
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3.3 COVID-19-only model

The COVID-19-only model is obtained by setting Ihd = Rhd = Idc = Svd = Ivd = 0 in (3).
Thus, we have,

dSh

dt
= ωh − �hc Ihc

Nh

Sh − �hSh + ηhcRhc,

dIhc
dt

= �hc Ihc
Nh

Sh − (αhc + �h + ϕhc)Ihc,

dRhc

dt
= αhc Ihc − �hRhc − ηhcRhc,

(5)

where, now, the total human population is given by, Nh = Sh + Ihc + Rhc. By adding up all
the equations of the system (5), we have

Ṅh = ωh − �hNh − ϕhc Ihc ≤ ωh − �hNh.

Consider the region

�hc =
{
(Sh, Ihc, Rhc) : N (t) � ωh

�h

}
.

Note that the region �hc is positively invariant [33], and it is sufficient to consider the dynamics
of the dengue only sub-model (5) in �hc.

The COVID-19-only model (5) has a DFE given by,

ε0
hc = (Sh, Ihc, Rhc) =

(
ωh

�h

, 0, 0

)
.

One measure of the potential for disease spread in a population is the threshold parameter
know as the reproduction number, R0C , which governs the local stability of the DFE of the
COVID-19-only model. Using the approach in [34], the associated next generation matrices
are given by

F =
[

�hc 0
0 0

]
,

and

V =
[

αhc + �h + ϕhc 0
−αhc �h + ηhc

]
.

The associated basic reproduction number R0C is given by

R0C = ρ(FV−1) = �hc

αhc + �h + ϕhc

, (6)

and the following result holds.

Lemma 3.2 The DFE of the COVID-19-only model (5) is locally asymptotically stable if
R0C < 1 and unstable if R0C > 1.

Proof The stability of the DFE ε0
hc = (

ωh

�h

, 0, 0) of the COVID-19-only model (5) is obtained

from the eigenvalues of the characteristic polynomial, which states that the equilibrium is
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stable if the eigenvalues of the characteristic polynomial are all negative. For ε0
hc, the Jacobian

matrix of the system is obtained as

J (ε0
hc) =

⎡
⎣−�h −�hc ηhc

0 �hc − (αhc + �h + ϕhc) 0
0 αhc −(�h + ηhc)

⎤
⎦ .

The eigenvalues of characteristic polynomial are given by

a1 = −�h, a2 = −(�h + ηhc), and a3 = �hc − (αhc + �h + ϕhc)

= �hc

(αhc + �h + ϕhc)
− 1 = R0C − 1.

Hence, the DFE ε0
hc of the COVID-19-only sub-model (5) is locally asymptotically stable

if R0C < 1. For R0C > 1, prevalence of COVID-19 approaches an endemic equilibrium. �	
We will skip the proof of the global stability of the endemic equilibrium (EE) of model

system (5) which was carried out in details in [8], where the COVID-19 only model is shown
not to undergo the phenomenon of backward bifurcation, consequently, the EE of the model
system (5) is globally asymptotically stable.

3.4 Dengue-only model

The dengue-only sub-model is obtained by setting Ihc = Rhc = Idc = 0 in (3). Thus, we
have

dSh

dt
= ωh − �vd Ivd

Nh

Sh − �hSh + ηhdRhd,

dIhd
dt

= �vd Ivd
Nh

Sh − (αhd + �h + ϕhd)Ihd,

dRhd

dt
= αhd Ihd − �hRhd − ηhdRhd,

dSvd

dt
= ωd − �hd Ihd

Nh

Svd − �vSvd,

dIvd
dt

= �hd Ihd
Nh

Svd − �v Ivd,

(7)

where, now, the total human population is Nh = Sh + Ihd + Rhd and the vector population is
Nv = Svd + Ivd. The feasible region for the sub-model system (7) is

�d =
{
(Sh, Ihd, Rhd, Svd, Ivd) ∈ R

5+ : Nh � ωh

�h

; Nv � ωd

�v

}
.

It can be shown that the region �d is positively invariant (so that it is sufficient to consider
the dynamics of the model (7) in �d).

The disease-free equilibrium (DFE) of the dengue-only model (7) is given by

ε0
d = (Sh, Ihd, Rhd, Svd, Ivd) =

(
ωh

�h

, 0, 0,
ωv

�v

, 0

)
,

and its associated next generation matrices are

F =
⎡
⎣ 0 0 �vd

0 0 0
�hdωv�h

ωh�v
0 0

⎤
⎦ ,
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and

V =
⎡
⎣αhd + �h + ϕhd 0 0

−αhd �h + ηhd 0
0 0 �v

⎤
⎦ ,

so that,

R0D = ρ(FV−1) = 1

�v

√
�hd�vd�hωv

ωh(αhd + �h + ϕhd)
. (8)

The threshold parameter R0D is the geometric mean of the average number of secondary
host infections produced by one vector, and the average number of secondary vector infections
produced by one host [35,36]. In fact, the form of the basic reproduction number in a vector-
borne disease is generally a geometric mean between infections caused by hosts and infections
caused by vectors [36].

Lemma 3.3 TheDFE of theDengue-only model (7) is locally asymptotically stable if R0D <

1 and unstable if R0D > 1.

Proof The stability of the DFE ε0
d = (Sh, Ihd, Rhd, Svd, Ivd) = (

ωh

�h

, 0, 0,
ωv

�v

, 0), of the

Dengue-only model (7) is obtained from the eigenvalues of the characteristic polynomial,
which states that the equilibrium is stable if the eigenvalues of the characteristic polynomial
are all negative. For ε0

d , the Jacobian matrix of the system is obtained as

J (ε0
d ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−�h 0 0 0 −�vd

0 −(αhc + �h + ϕhc) 0 0 �vd

0 αhc −(�h + ηhc) 0 0

0 −�hdωv�h

ωh�h

0 −�v 0

0
�hdωv�h

ωh�h

0 0 −�v

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The eigenvalues of characteristic polynomial are given by

a1 = −�h, a2 = −�v, a3 = −(�h + ηhc),

a4 = −1

2

√
ωh�v(τ − �v)2 + 4�hc�hd�hωv

ωh�v

− 1

2
(τ + �v),

and

a5 = 1

2

√
ωh�v(τ − �v)2 + 4�hc�hd�hωv

ωh�v

− 1

2
(τ + �v),

where τ = (αhd +�h +ϕhd). It can be shown that all eigenvalues of the characteristic equation
have negative real parts if R0D < 1. Hence, the DFE ε0

hd of the Dengue-only model system
(7) is locally asymptotically stable if R0D < 1.

�	
For R0D > 1, prevalence of dengue approaches an endemic equilibrium.
Other analyses of the dengue-only sub-model have been adequately dealt with in [37],

where also, the dengue only sub-model is shown to undergo the phenomenon of backward
bifurcation under certain conditions.
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4 Dengue-COVID-19 full model

The feasible region for system 3 is given by

�CD = �HC × �hd,

with �HC and �hd are as defined in the previous sections. It can be shown following the
approach in [15,17] that all solutions of the co-infection Dengue-COVID-19 model system 3
with non-negative initial conditions remain non-negative for all time t ≥ 0. Also, from
the theory of permanence [31], all solutions on the boundary of �CD eventually enter the
interior of �CD . Thus, �CD is positively invariant and attracting under the flow induced by
the system 3

4.1 Stability of the disease-free equilibrium

The disease-free equilibrium of the Dengue-COVID-19 3 is given by

E0 = (Sh, Ihd, Rhd, Ihc, Rhc, Idc, Svd, Ivd) =
(�hd

�h

, 0, 0, 0, 0, 0,
�vd

�v

, 0
)
. (9)

Having derived the basic reproduction numbers for the COVID-19 only and Dengue only
sub-models using the next generation method in [34], the associated reproduction number
for the full model system 3 is given by

R0cd = max {R0hc,R0hd} . (10)

The following result follows from Theorem 2 in [34].

Theorem 4.1 The DFE of the Dengue-COVID-19 model 3 is locally asymptotically stable
if the threshold parameter R0cd < 1, and unstable if R0cd > 1.

5 Optimal control model

In this section, we add time variant controls u1(t), u2(t), u3(t), u4(t) and u5(t) into (3) to
obtain the optimal interventions for the eradication of COVID-19 and dengue. The controls
are defined below:

i. u1: control against incident dengue infection,
ii. u2: control against incident COVID-19 infection,

iii. u3: control against co-infection with a second disease,
iv. u4: dengue treatment control,
v. u5: COVID-19 treatment control.

The controls u1, u2 and u3 satisfy 0 ≤ u1 < 0.81 following from the efficacy of the dengue
vaccine reported in [29], 0 < u2 < 0.90, following the general efficacy of the COVID-19
vaccine [38], 0 < u3 ≤ 0.75 taking the average of both the dengue and COVID-19 vaccine
efficacies. The dengue and COVID-19 treatment controls u4 and u5 are bounded as follows:
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0 < u4, u5 ≤ 0.80, with the assumption that treatment cannot be 100% effective against
either disease. The control system is presented thus:

dSh

dt
= ωh −

(
(1 − u1)

�vd Ivd
Nh

+ (1 − u2)
�hc(Ihc + Idc)

Nh

)
Sh − �hSh + ηhdRhd + ηhcRhc,

dIhd
dt

= �vd Ivd
Nh

((1 − u1)Sh + Rhc) − ((1 + u4)αhd + �h + ϕhd)Ihd − (1 − u3)ϑ1

�hc(Ihc + Idc)

Nh

Ihd

+ (1 + u5)αhc Idc,

dRhd

dt
= (1 + u4)αhd Ihd − �hRhd − ηhdRhd − �hc(Ihc + Idc)

Nh

Rhd,

dIhc
dt

= �hc(Ihc + Idc)

Nh

((1 − u2)Sh + Rhd) − ((1 + u5)αhc + �h + ϕhc)Ihc − (1 − u3)ϑ2

�vd Ivd
Nh

Ihc

+ (1 + u4)αhd Idc,

dRhc

dt
= (1 + u5)αhc Ihc − �hRhc − ηhcRhc − �vd Ivd

Nh

Rhc,

dIdc
dt

= (1 − u3)ϑ1

�hc(Ihc + Idc)

Nh

Ihd + (1 − u3)ϑ2

�vd Ivd
Nh

Ihc − (�h + ϕhd + ϕhc + (1 + u4)αhd

+ (1 + u5)αhc)Idc,

dSvd

dt
= ωd − (1 − u1)

�hd(Ihd + Idc)

Nh

Svd − �vSvd,

dIvd
dt

= (1 − u1)
�hd(Ihd + Idc)

Nh

Svd − �v Ivd,

(11)

subject to the initial conditions Sh(0) = S 0
h , Ihd(0) = I 0

hd, Rhd(0) = R 0
hd, Ihc(0) =

I 0
hc, Rhc(0) = R 0

hc, Idc(0) = I 0
dc, Svd(0) = S 0

vd, Ivd(0) = I 0
vd.

The following objective function is considered.

J
[
u1, u2, u3, u4, u5

] =
∫ T

0

[
c1 Ihd(t) + c2 Ihc(t) + c3 Idc(t) + c4Svd(t) + c5 Ivd(t) + w1

2
u2

1

+ w2

2
u2

2 + w3

2
u2

3 + w4

2
u2

4 + w5

2
u2

5

]
dt, (12)

where T is the final time. The total cost includes the cost of COVID-19 and dengue vacci-
nations, and other preventive measures and COVID-19 and dengue treatment for all infected
individuals. As a result, the nonlinear cost functional is used. In this sequel, we apply the
quadratic objective functional for measuring the cost of the control [20]. We seek to find an
optimal control, u∗

1 , u
∗
2 , u

∗
3 , u

∗
4 , u

∗
5 , such that

J (u∗
1 , u

∗
2 , u

∗
3 , u

∗
4 , u

∗
5 ) = min{J (u∗

1 , u
∗
2 , u

∗
3 , u

∗
4 , u

∗
5 )|u1, u2, u3, u4, u5 ∈ U }, (13)

where U = {(u∗
1 , u

∗
2 , u

∗
3 , u

∗
4 , u

∗
5 )}, such that u∗

1 , u
∗
2 , u

∗
3 are measurable with 0 ≤ u∗

1 ≤
0.9, 0 ≤ u∗

2 ≤ 0.9, 0 ≤ u∗
3 ≤ 0.9, 0 ≤ u∗

4 ≤ 1, 0 ≤ u∗
5 ≤ 1 for t ∈ [0, T ] is the control set.

The Hamiltonian is givenby:
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Z = c1 Ihd(t) + c2 Ihc(t) + c3 Idc(t) + c4Svd(t) + c5 Ivd(t) + w1

2
u2
1 + w2

2
u2
2 + w3

2
u2
3 + w4

2
u2
4 + w5

2
u2
5

+ λ1

(
ωh −

(
(1 − u1)

�vd Ivd
Nh

+ (1 − u2)
�hc(Ihc + Idc)

Nh

)
Sh − �hSh + ηhdRhd + ηhcRhc

)

+ λ2

(
�vd Ivd
Nh

((1 − u1)Sh + Rhc) − ((1 + u4)αhd + �h + ϕhd)Ihd − (1 − u3)ϑ1
�hc(Ihc + Idc)

Nh
Ihd

+(1 + u5)αhc Idc) + λ3

(
(1 + u4)αhd Ihd − �hRhd − ηhdRhd − �hc(Ihc + Idc)

Nh
Rhd

)

+ λ4

(
�hc(Ihc + Idc)

Nh
((1 − u2)Sh + Rhd) − ((1 + u5)αhc + �h + ϕhc)Ihc − (1 − u3)ϑ2

�vd Ivd
Nh

Ihc

+(1 + u4)αhd Idc) + λ5

(
(1 + u5)αhc Ihc − �hRhc − ηhcRhc − �vd Ivd

Nh
Rhc

)

+ λ6

(
(1 − u3)ϑ1

�hc(Ihc + Idc)

Nh
Ihd + (1 − u3)ϑ2

�vd Ivd
Nh

Ihc − (�h + ϕhd + ϕhc + (1 + u4)αhd

+(1 + u5)αhc)Idc) + λ7

(
ωd − (1 − u1)

�hd(Ihd + Idc)

Nh
Svd − �vSvd

)

+ λ8

(
(1 − u1)

�hd(Ihd + Idc)

Nh
Svd − �v Ivd

)
.

(14)

Theorem 5.1 Suppose the set {u1, u2, u3, u4, u5}minimizes J over U , then we have adjoint
variables, λ1, λ2, ..., λ8 (see Appendix for the expressions of

dλi
dt ) satisfying the adjoint equa-

tions

−∂λi

∂t
= ∂Z

∂i
,

with

λi (t f ) = 0, where, i = Sh, Ihd, Rhd, Ihc, Rhc, Idc, Svd, Ivd. (15)

Furthermore,

u∗
1 = min

{
1, max

(
0,

�hd(Ihd + Idc)Sv(λ8 − λ7) + Ivd�vdSh(λ2 − λ1)

w1Nh

)}
,

u∗
2 = min

{
1, max

(
0,

�hc(Ihc + Idc)Sh(λ4 − λ1)

w2Nh

)}
,

u∗
3 = min

{
1, max

(
0,

Ihd�hc(Ihc + Idc)ϑ1(λ6 − λ2) + Ivd�vd(Ihc + Idc)ϑ2(λ6 − λ4)

w3Nh

)}
,

u∗
4 = min

{
1, max

(
0,

Ihdαhd(λ2 − λ3) + Idcαhd(λ6 − λ4)

w4

)}
,

u∗
5 = min

{
1, max

(
0,

Ihcαhc(λ4 − λ5) + Idcαhc(λ6 − λ2)

w5

)}
,

(16)
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Proof of Theorem 5.1 Consider U∗ = (u∗
1, u

∗
2, u

∗
3, u

∗
4, u

∗
5) and S∗

h , I ∗
hd, R

∗
hd, I

∗
hc, R

∗
hc, I

∗
dc,

S∗
v , I ∗

vd being the associated solutions. Pontryagin’s Maximum Principle [39] is applied, such
that there exist adjoint variables satisfying:

−dλ1

dt
= ∂Z

∂Sh

, λ1(t f ) = 0, −dλ2

dt
= ∂Z

∂ Ihd
, λ2(t f ) = 0, −dλ3

dt
= ∂Z

∂Rhd

, λ3(t f ) = 0,

−dλ4

dt
= ∂Z

∂ Ihc
, λ4(t f ) = 0,−dλ5

dt
= ∂Z

∂Rhc

, λ5(t f ) = 0, −dλ6

dt
= ∂Z

∂ Idc
, λ6(t f ) = 0,

−dλ7

dt
= ∂Z

∂Svd

, λ7(t f ) = 0, −dλ8

dt
= ∂Z

∂ Ivd
, λ8(t f ) = 0,

(17)

with λ1(t f ) = λ2(t f ) = λ3(t f ) = λ4(t f ) = λ5(t f ) = λ6(t f ) = λ7(t f ) = λ8(t f ) = 0.
On the interior of the set, where 0 < u j < 1 for all ( j = 1, 2, 3, 4, 5), we have that

0 = ∂Z
∂u1

= w1Nhu
∗
1 − [Ihd�hdSv(λ8 − λ7) + Ivd�vdSh(λ2 − λ1)],

0 = ∂Z
∂u2

= w2Nhu
∗
2 − [Ihc�hcSh(λ4 − λ1)],

0 = ∂Z
∂u3

= w3Nhu
∗
3 − [Ihc Ihd�hcϑ1(λ6 − λ2) + Ihc Ivd�vdϑ2(λ6 − λ4)],

0 = ∂Z
∂u3

= w4u
∗
4 − [Ihdαhd(λ2 − λ3) + Idcαhd(λ6 − λ4)],

0 = ∂Z
∂u3

= w5u
∗
5 − [Ihcαhc(λ4 − λ5) + Idcαhc(λ6 − λ2)].

(18)

Therefore,

u∗
1 = �hd(Ihd + Idc)Sv(λ8 − λ7) + Ivd�vdSh(λ2 − λ1)

w1Nh

,

u∗
2 = �hc(Ihc + Idc)Sh(λ4 − λ1)

w2Nh

,

u∗
3 = Ihd�hc(Ihc + Idc)ϑ1(λ6 − λ2) + Ivd�vd(Ihc + Idc)ϑ2(λ6 − λ4)

w3Nh

,

u∗
4 = Ihdαhd(λ2 − λ3) + Idcαhd(λ6 − λ4)

w4
,

u∗
5 = Ihcαhc(λ4 − λ5) + Idcαhc(λ6 − λ2)

w5
.

(19)

u∗
1 = min

{
1, max

(
0,

�hd(Ihd + Idc)Sv(λ8 − λ7) + Ivd�vdSh(λ2 − λ1)

w1Nh

)}
,

u∗
2 = min

{
1, max

(
0,

�hc(Ihc + Idc)Sh(λ4 − λ1)

w2Nh

)}
,

u∗
3 = min

{
1, max

(
0,

Ihd�hc(Ihc + Idc)ϑ1(λ6 − λ2) + Ivd�vd(Ihc + Idc)ϑ2(λ6 − λ4)

w3Nh

)}
,

u∗
4 = min

{
1, max

(
0,

Ihdαhd(λ2 − λ3) + Idcαhd(λ6 − λ4)

w4

)}
,

u∗
5 = min

{
1, max

(
0,

Ihcαhc(λ4 − λ5) + Idcαhc(λ6 − λ2)

w5

)}
, (20)

�	
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Fig. 2 Model fitting to cumulative confirmed daily COVID-19 cases for Brazil from 1 February, 2021 to 20
September, 2021

5.1 Baseline values of the parameters and model fitting

The total population of Brazil is estimated at 212,559,409 [27], while the life expectancy in
Brazil is estimated at 75.88 years. Hence, we set the recruitment rat of humans to 212,559,409

75.88×365

per day, whereas the natural death rate for humans is set at 1
75.88×365 per day. The dengue

recovery rate is estimated at 0.15 per day [28,29] so that we set αhd = 0.15 per day. There
is no clinical evidence to tell us about the susceptibility of COVID-19 patients to dengue or
vice versa. Hence, we set ϑ1 = ϑ2 = 1. The other dengue-related parameters are presented
in Table 1, together with the references. The initial conditions are set as follows: Sh(0) =
200, 000, 000. The total dengue cases in Brazil for 2021, as at August, 2021 are estimated
at 671,732 [40]. Hence, we set Ihd = 400, 000, Rhd = 4000, Idc = 200, 000. The total active
COVID-19 cases as at February 1, 2021, were 942,878. Hence, we set Ihc = 942, 878. The
total recoveries from COVID-19 as at that same day is 50,925. Thus, we set Rhc(0) = 50, 925.

The model fitting was performed using fmincon function in the Optimization Toolbox of
MATLAB [41]. Using the data sets for cumulative confirmed daily COVID-19 cases and
deaths for Brazil from February 1, 2021, to September 20, 2021 [27], the COVID-19-related
parameters are estimated as follows: �hc = 0.1494, ϕhc = 0.0047, αhc = 0.36978. Figures 2
and 3 present the fitting of the model (3) to the cumulative confirmed daily COVID-19 cases
and cumulative daily COVID-19 deaths for Brazil from 1 February, 2021 to 20 September,
2021. Both figures show that our model fits well to the two data sets obtained from [27]

6 Numerical simulations

Simulations carried out on the control system (11), adjoint Eq. (17) and characterizations
of the control (20) are run in MATLAB using the forward backward sweep by the Runge–
Kutta method. The balancing factors are assumed as follows: c1 = c2 = c3 = c4 = c5 =
1. Likewise, the quadratic cost functions 1

2w1u2
1 ,

1
2w2u2

2 ,
1
2w3u2

3 , 1
2w4u2

4 and 1
2w5u2

5 are
applied, over time, in order to compute the total cost for each strategy implemented. The
weight constants are set as follows: w1 = 900, w2 = 1500, w3 = 2000, w4 = 1000 and

123



 1090 Page 16 of 33 Eur. Phys. J. Plus        (2021) 136:1090 

01−Feb−2021 23−Mar−2021 12−May−2021 01−Jul−2021 20−Aug−2021 09−Oct−2021
2

2.5

3

3.5

4

4.5

5

5.5

6 x 105

Time (days)

C
um

ul
at

iv
e 

da
ily

 C
O

VI
D

−1
9 

D
ea

th
s

Model
Cumulative daily COVID−19 Deaths for Brazil

Fig. 3 Model fitting to cumulative daily COVID-19 deaths for Brazil from 1 February, 2021 to 20 September,
2021

w5 = 1200. It is assumed here that, the cost of implementing the dengue prevention control
(vaccination and use of treated bed nets and insecticides spray) is less compared to the
cost of implementing the COVID-19 prevention control (vaccination, use of hand sanitizers
and personal hygiene, use of face-masks in public places and use of personal protective
equipments (PPE) by medical personnel). We also assumed that the cost of implementing
control against co-infection with a second disease should be more than the cost of preventive
control against respective diseases. It is also assumed that the cost of dengue treatment control
should be less compared to the cost of COVID-19 treatment control.

6.1 Strategy A: Control against incident dengue infection (u1 �= 0)

Simulations of the optimal control system (11) when the strategy that prevents incident
dengue infection (u1 �= 0) is administered are presented in Figs. 4, 5, 6 and 7 , respectively.
It is observed that when this intervention strategy is implemented, for �vd = 5.0,�hd = 3.6
and �hc = 0.5, so that the reproduction number, R0cd = max {R0hc,R0hd} = 3.4598 > 1,
there is a significant reduction in the number of individuals infected with dengue (Fig. 4)
(as expected). Interestingly, this dengue prevention strategy also averts about 870,000 new
COVID-19 cases (as depicted by Fig. 5). Also, worthy of note is that, this strategy against
incident dengue infection also has positive population level impact on number of individuals
co-infected with dengue and COVID-19 (as shown in Fig. 6, where a total of 4,196,644
new co-infection cases were averted). Moreover, this strategy also averts 346,181 cases of
vector infections, thereby significantly reducing the infectious vector population (Fig. 7). The
control profile for this control strategy is presented in Fig. 8. The control profile shows that
this strategy is at its peak for the first 15 days, drops and then rises again and remains at its
peak for the remaining days of the simulation.

6.2 Strategy B: Control against incident COVID-19 infection (u2 �= 0)

Simulations of the model (11) when the strategy that prevents incident COVID-19 infection
(u2 �= 0) is implemented are presented in Figs. 9, 10 and 11. It is observed that when this
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Fig. 4 Individuals infected with dengue when strategy A is implemented

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

8 x 107

Time (Days)

In
di

vi
du

al
s 

in
fe

ct
ed

 w
ith

 C
O

VI
D

−1
9 No control

Strategy A (u1 ≠ 0)

Fig. 5 Individuals infected with COVID-19 when strategy A is implemented

strategy is implemented, for �vd = 5.0,�hd = 3.6 and �hc = 0.5, so that the reproduction
number, R0cd = max {R0hc,R0hd} = 3.4598 > 1, there is a significant reduction in the
number of individuals infected with COVID-19 infection (Fig. 9) (as expected). Also, it is
imperative to note that, this control against incident COVID-19 infection also has positive
impact on number of individuals co-infected with dengue and COVID-19 (Fig. 10, where
a total of 4,204,905 new co-infection cases were prevented). In addition, this control also
averts about 34,400 vector infections, thereby significantly bringing down the infectious
vector population (Fig. 11). The control profile for this control strategy is depicted in Fig. 12.
The control profile shows that this strategy is at its peak for the first 15 days, drops and then
rises again, and remains at its peak for the remaining days of the simulation.
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Fig. 6 Individuals co-infected with dengue and COVID-19 infections when strategy1 A is implemented
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Fig. 7 Infectious vectors infected with dengue when strategy A is implemented

6.3 Strategy C: Control against co-infection with a second disease (u3 �= 0)

The optimal control simulations for the system (11) when the strategy that implements control
against co-infection with a second disease (u3 �= 0) is administered are presented in Figs. 13
and 14 . It is revealed that when this strategy is implemented, for �vd = 5.0,�hd = 3.6
and �hc = 0.5, so that the reproduction number, R0cd = max {R0hc,R0hd} = 3.4598 > 1,
there is a great reduction in the co-infection new cases (as shown in Fig. 13), where a total of
3,155,000 co-infection new cases were averted. Also, this strategy also averts about 18,300
vector infections, thus significantly bringing down the infectious vector population (Fig. 14).
The control profile for this control strategy is given in Fig. 15. The control profile shows that
this strategy is at its peak for the entire simulation period.
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Fig. 8 Control profile for strategy A
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Fig. 9 Individuals infected with dengue when strategy B is implemented

6.4 Strategy D: Dengue treatment control (u4 �= 0)

The control model (11) simulations when dengue treatment strategy alone (u4 �= 0) is admin-
istered are given in Figs. 16, 17 and 18 . It is observed that when dengue treatment strategy
alone is implemented, for �vd = 5.0,�hd = 3.6 and �hc = 0.5, so that the reproduction
number, R0cd = max {R0hc,R0hd} = 3.4598 > 1, there is a gross reduction in the number
of individuals infected with dengue (Fig. 16) (as expected). Also, worthy of note is that, this
strategy equally has positive population level impact on co-infected individuals (as depicted
by Fig. 17, where a total of 2,349,000 new co-infection cases were averted). In addition,
this strategy also prevents 55,200 vector infections (as shown in Fig. 18). The control plot is
presented in Fig. 19. The control profile shows that this strategy only attains its peak value
and is most effective after about 120 days.
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Fig. 10 Individuals co-infected with dengue and COVID-19 infections when strategy B is implemented
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Fig. 11 Infectious vectors infected with dengue when strategy B is implemented

6.5 Strategy E: COVID-19 treatment control (u5 �= 0)

The control model (11) simulations when COVID-19 treatment control (u5 �= 0) is the only
administered strategy are presented in Figs. 20, 21 and 22 . It is seen from the simulations,
which were carried out for �vd = 5.0,�hd = 3.6 and �hc = 0.5, so that the reproduction
number, R0cd = max {R0hc,R0hd} = 3.4598 > 1, that there is a significant reduction in the
number of individuals infected with COVID-19 (Fig. 20) (as expected). Interestingly, this
strategy also has positive population level impact on co-infection new cases (as presented in
Fig. 21, where a total of 2,544,000 new co-infection cases were averted). Nonetheless, this
strategy also averts about 11,200 cases of vector infections, thus bringing down the infectious
vector population (Fig. 22). The control plot against time, for this strategy, is given in Fig. 23.
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Fig. 12 Control profile for strategy B
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Fig. 13 Individuals co-infected with dengue and COVID-19 infections when strategy C is implemented

The control profile shows that this strategy attains its peak value for the initial days of the
simulation, drops and then rises to its peak again after about 140 days.

6.6 Cost-effectiveness analysis

In this section, we seek to determine the intervention strategy which is most cost-effective in
the fight against dengue and COVID-19 co-infections. In order to realize this, the methods
used are: the average cost-effectiveness ratio (ACER) and the incremental cost-effectiveness
ratio (ICER). ”The cost-effectiveness analysis is used to evaluate the health interventions
related benefits so as to justify the costs of the strategies . This is obtained by comparing the
differences among the health outcomes and costs of those interventions. ACER deals with
a single intervention strategy and weighing the intervention against its baseline option. It is
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Fig. 14 Infectious vectors infected with dengue when strategy C is implemented
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Fig. 15 Control profile for strategy C

the ratio of the total cost of the intervention to the total number of infection averted by the
intervention” [20]. The formula is as follows:

ACER = Total cost produced by intervention

Total number of infection averted
.

In a similar manner, ICER deals with the comparison of the differences in the costs and health
benefits of two alternate competing interventions. ”It is the ratio of the change in costs of
two alternative strategies to the change in the total number of infection averted by the two
strategies”. The ICER formula is given by:

ICER = Difference in costs between strategies

Difference in health effects between strategies
.
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Fig. 16 Individuals infected with dengue when strategy D is implemented

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 x 106

Time (Days)

In
di

vi
du

al
s 

co
−i

nf
ec

te
d 

w
ith

 
D

en
gu

e 
an

d 
C

O
VI

D
−1

9

No control
Strategy D (u4 ≠ 0)

Fig. 17 Individuals co-infected with dengue and COVID-19 infections when strategy D is implemented

Since our major objective is on how to reduce the co-infection of both dengue and COVID-
19 in the population, the total co-infected cases averted and the total cost of the strategies
applied shall be used for the cost-effectiveness analysis in this section. These are presented
in Table 2. The total cases averted is obtained by calculating the difference in the population
of co-infected individuals when control is applied and when control is not applied.

The incremental cost-effectiveness ratio (ICER) for strategies D (dengue treatment control
(u4 �= 0)) and strategy E (COVID-19 treatment control (u5 �= 0)) are now evaluated.

ICER (D) = 1000

2,349,000
= 0.0004257,

ICER (E) = 1200 − 1000

2,544,000 − 2,349,000
= 0.001026.
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Fig. 18 Infectious vectors infected with dengue when strategy D is implemented
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Fig. 19 Control profile for strategy D

Comparing ICER (D) and ICER(E), it is observed that ICER (E) is greater than ICER (D),
showing that strategy E is more costly and less effective compared to strategy D. Therefore,
strategy E is removed from proceeding ICER computations, shown in Table 3. We shall now
compare strategies D and C (Table 4).

Computing ICER for strategies D (dengue treatment control (u4 �= 0)) and C (control
against co-infection with a second disease (u3 �= 0)), it is observed that ICER (C) is greater
than ICER (D), showing that strategy C is more costly and less effective compared to strategy
D. Hence, strategy C is removed from subsequent ICER computations. We shall now compare
strategies D and A (Table 5).
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Fig. 20 Individuals infected with dengue when strategy E is implemented
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Fig. 21 Individuals co-infected with dengue and COVID-19 infections when strategy E is implemented

ICER (D) = 1000

2,349,000
= 0.0004257,

ICER (C) = 2000 − 1000

3,155,000 − 2,349,000
= 0.001241.

Computing ICER for strategies D (dengue treatment control (u4 �= 0)) and A (control
against incident dengue infection (u1 �= 0)), it is observed that ICER (D) is greater than
ICER (A), showing that strategy D is more costly and less effective compared to strategy A.
Thus, strategy A is used in subsequent ICER computations, while strategy D is removed. We
shall now compare strategies A and B (Table 6).
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Fig. 22 Infectious vectors infected with dengue when strategy E is implemented
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Fig. 23 Control profile for strategy E

ICER (D) = 1000

2,349,000
= 0.0004257,

ICER (A) = 900 − 1000

4,196,644 − 2,349,000
= −0.00005412.

Computing ICER for strategies A (control against incident dengue infection (u1 �= 0)) and
B (control against incident COVID-19 infection (u1 �= 0)), it is observed that ICER (B) is
greater than ICER (A), showing that strategy B is more costly and less effective compared to
strategy A. Hence, strategy A is the most cost-effective in controlling dengue and COVID-19
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Table 2 Increasing order of the
total co-infection cases averted
using the control strategies

Strategy Total infection averted Total cost ACER

D: (u4 �= 0) 2,349,000 1000 0.0004257

E: (u5 �= 0) 2,544,000 1200 0.0004717

C: (u3 �= 0) 3,155,930 2000 0.006339

A: (u1 �= 0) 4,196,644 900 0.002145

B: (u2 �= 0) 4,204,905 1500 0.0003567

Table 3 ICER computations for strategies D and E

Strategy Total infection averted Total cost ACER ICER

D: (u4 �= 0) 2,349,000 1000 0.0004257 0.0004257

E: (u5 �= 0) 2,544,000 1200 0.0004717 0.001026

Table 4 ICER computations for strategies D and C

Strategy Total infection averted Total cost ACER ICER

D: (u4 �= 0) 2,349,000 1000 0.0004257 0.0004257

C: (u3 �= 0) 3,155,000 2000 0.0006339 0.001241

Table 5 ICER computations for strategies D and A

Strategy Total infection averted Total cost ACER ICERr

D: (u4 �= 0) 2,349,000 1000 0.0004257 0.0004257

A: (u1 �= 0) 4,196,644 900 0.0003567 – 0.00005412

co-infections.

ICER (A) = 900

4,196,644
= 0.0002145,

ICER (B) = 1500 − 900

4,204,905 − 4,196,644
= 0.07263.

Table 6 ICER computations for strategies A and B

Strategy Total infection averted Total costr ACER ICER

A: (u1 �= 0) 4,196,644 900 0.0002145 0.0002145

B: (u2 �= 0) 4,204,905 1500 0.0003567 0.07263
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7 Conclusion

We have formulated and analyzed a mathematical model for the co-infection and COVID-19
and dengue transmission dynamics, with optimal control and cost-effectiveness analysis. The
sub-models are shown to be locally asymptotically stable when the respective reproduction
numbers are below unity. Using available data sets, the model is fitted to the cumulative
confirmed daily COVID-19 cases and deaths for Brazil (a country with high co-endemicity
of both diseases) from February 1, 2021 to September 20, 2021. The fitting was done using
the fmincon function in the Optimization Toolbox of MATLAB. Parameters denoting the
COVID-19 contact rate, death rate and loss of infection acquired immunity to COVID-
19 were estimated using the two data sets. The appropriate conditions for the existence
of optimal control and the optimality system for the co-infection model are established
using the Pontryagin’s Principle. Different control strategies were considered and simulated
for the model, which include: controls against incident dengue and COVID-19 infections,
control against co-infection with a second disease and treatment controls for both dengue
and COVID-19. Highlights of the simulation results show that:

i. dengue prevention strategy could avert as much as 870,000 new COVID-19 infections
(as depicted in Fig. 5);

ii. dengue only control strategy or COVID-19 only control strategy significantly reduces
new co-infection cases. These are presented in Figs. 6 and 10 ;

iii. the strategy that implements control against incident COVID-19 infection (vaccination,
use of hand sanitizers and personal hygiene, use of face-masks in public places and use of
personal protective equipments (PPE) by medical personnel) averts the highest number
of co-infection cases than any of the administered control strategies. This is depicted by
Fig. 10, where a total of 4,204,905 new co-infection cases were averted.

iv. the strategy implementing control against incident dengue infection is the most cost-
effective in controlling dengue and COVID-19 co-infections as presented in Sect. 6.6).

As COVID-19 pandemic threatens the delivery of dengue services, the lockdown could have
further impacted the continuation of dengue control programs, and there is an urgent need
for rapid and effective responses to avoid dengue outbreaks.

Our model was created based on the focus of COVID-19 and dengue co-infection only.
Thus, we did not investigate the impact of multiple COVID-19 stains and waves on the
dynamics of the two diseases. Also, the emergence of COVID-19 and dengue co-infection
warrants further investigations at the individual level (within host dynamics). While this is
to the best of our knowledge seemingly the first study of the co-interaction of COVID-19
and dengue, more studies should be devoted to the mathematical (agent based, within/intra-
host dynamics) and epidemiological dynamics of this co-infection. Due to the uncertainty
of several aspects and characteristics of both diseases, we realize the difficulty in finding
estimates for certain parameters in this study. Specific parameters difficult to estimate are
the modification parameters accounting for susceptibility of dengue infected individuals
to COVID-19 and the modification parameter accounting for susceptibility of COVID-19
infected individuals to dengue. Because mathematical models are symbolic representations
of biological systems, by construction, they inherit the loss of information which could
potentially make the prediction of model outcomes imprecise. Therefore, exploring sensitivity
analysis of the model variables and parameters to changes in the assumptions made regarding
the characteristics of the disease is viable.

It is important to note from Fig. 15 that the control u3 for the co-infection is optimally
applied for the entire simulation period. On the contrary, the other four controls u1, u2, u4
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and u5 all start at a high lever, but deepens after a short time before returning to the optimum.
This striking result may be due to the initial inadequate treatment when the disease emerged,
and vaccine hesitancy/denial at the onset of the vaccination campaign. It has been reported
how hesitancy/denial is challenging the vaccination campaigns with the number of those
infected increasing relative to the percentage of population that avoids getting vaccinated
[42]. This is an area that warrants further investigation as well as the impact of multiple
waves of COVID-19 on disease co-interaction.
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Appendix: Adjoint functions of optimality system
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2 − βc (u2 − 1)

(I c + Id + Idc + R c + Rd + Sh)

+ Iv βv (u1 − 1)

(I c + Id + Idc + R c + Rd + Sh)
2

)
− Iv R c βv λ5

(I c + Id + Idc + R c + Rd + Sh)
2 ,

λ
′
7 = λ7

(
�v − βd (u1 − 1) (Id + Idc)

(I c + Id + Idc + R c + Rd + Sh)

)
− c4 + βd λ8 (u1 − 1) (Id + Idc)

(I c + Id + Idc + R c + Rd + Sh)

λ
′
8 = λ8 �v − c5 + R c βv λ5

(I c + Id + Idc + R c + Rd + Sh)
− βv λ2 (R c − Sh (u1 − 1))

(I c + Id + Idc + R c + Rd + Sh)

− Sh βv λ1 (u1 − 1)

(I c + Id + Idc + R c + Rd + Sh)
− I c βv λ4 ϑ2 (u3 − 1)

(I c + Id + Idc + R c + Rd + Sh)
+ I c βv λ6 ϑ 2 (u3 − 1)

(I c + Id + Idc + R c + Rd + Sh)
,
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